Duality relates objects, which seem different at first but turn out to be similar. The concept of duality occurs almost everywhere in maths. If two objects seem different but are actually the same, we can view each object in a “usual” way, and in a “dual” way – the new vantage point is helpful for new understanding of the object. In this blog post we’ll see a pictorial example of a mathematical duality.

How are these two graphs related?

In the first graph, we have five vertices, the five black dots, and six green edges which connect them. For example, the five vertices could represent cities (San Francisco, Oakland, Sausalito etc. ) and the edges could be bridges between them.

In the second graph, the role of the cities and the bridges has swapped. Now the bridges are the vertices, and the edges (or hyperedges) are the cities. For example, we can imagine that the cities are large metropolises and the green vertices are the bridge tolls between one city and the next.

Apart from swapping the role of the vertices and the edges, *the information in the two graphs is the same*. If we shrink each city down to a dot in the second graph, and grow each bridge toll into a full bridge, we get the first graph. We will see that the graphs are *dual *to each other.

We represent each graph by a labeled matrix: we label the rows by the vertices and the columns by the edges, and we put a in the matrix whenever the vertex is in the edge. For example, the entry for vertex and edge is , because edge contains vertex . The matrix on the left is for the first graph, and the one on the right is for the second graph.

We can see that the *information in the two graphs is the same *from looking at the two matrices – they are the same matrix, transposed (or flipped). The matrix of a hypergraph is the transpose of the matrix of the dual hypergraph.

Mathematicians are always on the look-out for hidden dualities between seemingly different objects, and we are happy when we find them. For example, in a recent project we studied the connection between graphical models, from statistics, and tensor networks, from physics. We showed that the two constructions are the duals of each other, using the hypergraph duality we saw in this example.